Блог ARTMED

 16 декабря 2019 

АВТОМАТИЧЕСКАЯ ТУАЛЕТНАЯ СИСТЕМА ДЛЯ ЛЕЖАЧИХ БОЛЬНЫХ !!

Это автоматическая система туалета для прикованных к постели больных, для людей с ограниченными возможностями, для пожилых, инвалидов.

Подробнее по ссылке https://artmed.store/avtomaticheskiy-tualet-curaco-carebid…/

АВТОМАТИЧЕСКАЯ ТУАЛЕТНАЯ СИСТЕМА ДЛЯ ЛЕЖАЧИХ БОЛЬНЫХ
АВТОМАТИЧЕСКАЯ ТУАЛЕТНАЯ СИСТЕМА ДЛЯ ЛЕЖАЧИХ БОЛЬНЫХ


АВТОМАТИЗИРОВАННАЯ ТЕХНОЛОГИЯ.
Когда система обнаруживает мочу и / или кал с помощью своих современных встроенных датчиков, она автоматически смывает экскременты, ополаскивает и сушит тело пациента, обеспечивая чистоту и комфорт больного в автоматическом режиме. Эксклюзивная новая технология обеспечивает революционное решение для здравоохранения и ухода за тяжелыми лежачими пациентами.

ФУНКЦИИ ТУАЛЕТНОЙ СИСТЕМЫ. АВТОМАТИЧЕСКИЙ РЕЖИМ.
С помощью современной сенсорной технологии, использующей встроенные фото датчики и электродные датчики, аппарат автоматически определяет тип экскрементов (моча / кал) для проведения оптимального процесса эвакуации. Автоматический режим включает в себя режимы УДАЛЕНИЕ — ОБМЫВАНИЕ — ВЫСУШИВАНИЕ.

 4 декабря 2019 

В текущем 2019 году Нобелевской премии в области физиологии и медицины удостоены американцы William G.Kaelin Jr (Уильям Кэлин) и Gregg L.Semenza (Грегг Семенза), британец Sir Peter J.Ratcliffe (Питер Рэтклифф) за изучения механизма реакции клеток на гипоксию. 

Согласно формулировке Нобелевского комитета, лауреаты отмечены «за открытие механизмов, посредством которых клетки воспринимают доступность кислорода и адаптируются к ней».

Вручение Нобелевской премии и лекция нобелевских лауреатов состоится 07 Декабря 2019 года в Каролинском университете (США).

Первоначальной моделью для изучения механизма реакции клеток на гипоксию стала регуляция гена эритропоэтина в клетках почек или печени. За десяток лет выяснились основные этапы этой регуляции, общая схема которой приведена на рис. 2.

Рис. 2. Общая схема контроля реакции клеток на доступность кислорода.
Рис. 2. Общая схема контроля реакции клеток на доступность кислорода. А — при гипоксии белок VHL, курсирующий вместе с другими компонентами убиквитинирующего комплекса (элонгины B и C, CUL-2) между ядром и цитоплазмой, не взаимодействует с HIFα. Субъединицы фактора HIF, поступая в ядро, связываются и направляются к генам-мишеням, активируя их транскрипцию. B — при нормализации доступа кислорода происходит убиквитинирование белка HIFα, опосредованное его взаимодействием с VHL, после чего HIFα экспортируется в цитоплазму и разрушается протеасомами. Рисунок из статьи I Groulx, S. Lee, 2002. Oxygen-Dependent Ubiquitination and Degradation of Hypoxia-Inducible Factor Requires Nuclear-Cytoplasmic Trafficking of the von Hippel-Lindau Tumor Suppressor Protein


В 1991 году Sir Peter J.Ratcliffe в своих исследованиях обнаружил около 3'-концевого участка гена эритропоэтина регуляторный участок (энхансер), присутствие которого определяет способность гена повышать уровень экспрессии при дефиците кислорода (C. W. Pugh et al., 1991. Functional analysis of an oxygen-regulated transcriptional enhancer lying 3' to the mouse erythropoietin gene). Годом позже в лаборатории, где работал Грегг Семенза был выделен и исследован транскрипционный фактор, связывающийся с ДНК в этой области, — он получил название HIF (G. L. Semenza, G. L. Wang, 1992. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation). Этот белок формируется из двух субъединиц: одна из них обозначается как HIFα, другая — HIFβ. Вскоре было установлено, что HIF работает не только в почках и печени, но и во всех прочих типах клеток организма (G. L. Wang, G. L. Semenza, 1993. General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia).

Здесь можно отметить, что у человека и других позвоночных обе субъединицы фактора HIF представлены семействами, включающими по 3 паралогичных гена, которые работают в разных типах клеток и регулируют разные наборы генов. Причем белковый продукт гена HIF3α, по-видимому, является ингибитором по отношению к продукту гена HIF1α. Тонкости функциональных особенностей всех паралогов все еще не до конца изучены.

Количество мРНК и белка HIFβ в клетках относительно постоянно, оно не зависит от концентрации кислорода, а вот субъединица HIFα является регулируемой. Во-первых, ее количество в клетке держится на низком уровне при нормальном уровне кислорода, но резко возрастает при гипоксии. Во-вторых, при гипоксии он обнаруживается исключительно в ядре, а при нормальном уровне кислорода — преимущественно в цитоплазме, что обеспечивается взаимодействием белка с вспомогательными белками системы переноса белков между ядром и цитоплазмой.

Исследования William G.Kaelin Jr позволили выяснить, что количество белка HIFα регулируется посредством протеолиза — разрушения при помощи протеасом (M. Ivan et al., 2001. HIFα Targeted for VHL-Mediated Destruction by Proline Hydroxylation: Implications for O2 Sensing). Протеасомы узнают белки-мишени по пришитым убиквитиновым меткам. В случае HIFα убиквитинирование осуществляется при участии того самого белка VHL, который уже упоминался выше. Ген, кодирующий белок VHL, входит в число наиважнейших генов-супрессоров опухолей. И это, по-видимому, напрямую связано с его ролью в регуляции HIF — как минимум, отчасти (W. G. Kaelin, 2005. The von Hippel-Lindau tumor suppressor protein: roles in cancer and oxygen sensing, K. Kondo et al., 2003. Inhibition of HIF2α Is Sufficient to Suppress pVHL-Defective Tumor Growth). 

Позднее были установлены новые подробности. Оказалось, что для взаимодействия с VHL требуется появление гидроксильных групп (-OH) на двух остатках пролинав молекуле HIFα. Гидроксилирование осуществляется ферментами PHD (Prolil hydroxylase), которые кодируются тремя паралогичными генами (PHD1,2,3). Эта реакция происходит при непосредственном участии молекулярного кислорода (O2), а также требует присутствия ионов железа и аскорбиновой кислоты. При недостатке какого-то из этих компонентов реакция гидроксилирования становится невозможной, что приводит к прекращению взаимодействия HIFα с VHL, и количество белка HIFα начинает расти.

Еще одной составляющей изученного механизма оказалось гидроксилирование по остатку аспарагина в молекуле HIFα, которое осуществляется (при тех же условиях, что и гидроксилирование по пролину) другим ферментом, названным FIH1 (Factor inhibiting HIF). Гидроксилирование остатка аспарагина препятствует взаимодействию HIFα с транскрипционным коактиватором (CBP или p300), без которого уровень активации транскрипции генов-мишеней оказывается заметно ниже.

Аспарагин-гидроксилаза и пролин-гидроксилазы имеют разный порог активации. Полномасштабный ответ на гипоксию развивается при парциальном давлении кислорода около 1% от нормы или ниже. При этой концентрации гидроксилазы абсолютно неактивны. По мере повышения концентрации кислорода после гипоксии первым активируется белок FIH-1, который гидроксилирует остатки аспарагина, приводя к частичному подавлению активаторной функции HIF, а при дальнейшем приближении концентрации кислорода к нормальному уровню становится активной и диоксигеназа PHD, гидроксилирующая остатки пролина, и концентрация HIFα начинает быстро снижаться (рис. 3).

Рис. 3. Схема регулирования функции фактора HIF гидроксилазами.
Рис. 3. Схема регулирования функции фактора HIF гидроксилазами. EGLN — альтернативное название фермента PHD, остальные пояснения в тексте. Рисунок из статьи W. G. Kaelin, 2005. Proline hydroxylation and gene expression

Позже оказалось, что помимо убиквитинирования, VHL способен блокировать работу HIF еще и другим путем — привлекая к нему белки-репрессоры, препятствующие активации транскрипции генов-мишеней, как показано на рис. 4.

Рис. 4. Взаимодействие VHL и HIFα, реализующееся только при нормальном уровне доступа кислорода, но не при гипоксии, влечет за собой два рода событий.
Рис. 4. Взаимодействие VHL и HIFα, реализующееся только при нормальном уровне доступа кислорода, но не при гипоксии, влечет за собой два рода событий: во-первых, убиквитинирование и деградацию HIFα в цитоплазме, а во-вторых, привлечение репрессорных белков (на этой схеме — VHLaK, KAP) к области взаимодействия HIFα с ДНК. Рисунок из статьи Z. Li et al., 2003. The VHL protein recruits a novel KRAB-A domain protein to repress HIF-1α transcriptional activity


Регуляция с участием HIF затрагивает в сумме более трех сотен генов, функция которых заключается в обеспечении снабжения тканей кислородом, стимулировании регенеративных процессов и включении защитных механизмов внутри клеток, подвергшихся воздействию гипоксии (J. Schödel et al., 2011. High-resolution genome-wide mapping of HIF-binding sites by ChIP-seq).

Например, одной из таких защитных реакций является повышение интенсивности реакций гликолиза (расщепления глюкозы до молочной кислоты в цитозоле клеток), как альтернативного пути наработки АТФ (в обычных условиях основная доля АТФ производится за счет кислородного дыхания, осуществляемого митохондриями). Также гипоксия стимулирует аутофагию, и одновременно подавляет некоторые особенно энергозатратные процессы. На уровне межтканевой регуляции происходит стимуляция не только эритропоэза, но и ангиогенеза (роста сосудов) — благодаря стимуляции синтеза и секреции фактора роста эндотелия сосудов VEGF, расширения капилляров, интенсивности вентиляции легких и целого ряда других физиологических процессов. В нервной ткани обнаружилась выраженная реакция на колебания снабжения мозга кислородом в клетках астроцитах. Оказалось, что выделяемый ими эритропоэтин не только участвует в активации эритропоэза, но и стимулирует миграцию нейробластов в область ишемического повреждения мозга, то есть регенерацию нервной ткани (J. C. Chavez et al., 2006. The Transcriptional Activator Hypoxia Inducible Factor 2 (HIF-2/EPAS-1) Regulates the Oxygen-Dependent Expression of Erythropoietin in Cortical Astrocytes).

Вся система реакций на уровне молекул, клеток и организма включает множественные взаимовлияния, как положительные, так и отрицательные, формирующие разнообразные обратные связи (рис. 5). Весьма примечательно, что в число генов, активируемых фактором HIF, входят гены ферментов гидроксилаз, которые в конечном итоге ограничивают реализацию ответа на гипоксию.

Рис. 5. Общая схема взаимных регуляций компонентов системы реакции на гипоксию.
Рис. 5. Общая схема взаимных регуляций компонентов системы реакции на гипоксию. Рисунок из статьи W. G. Kaelin Jr., P. J. Ratcliffe, 2008. Oxygen Sensing by Metazoans: The Central Role of the HIF Hydroxylase Pathway

А при чрезмерно затянувшемся состоянии гипоксии к регуляции подключается p53 — еще один известный супрессор опухолей. В комплексе с белком Mdm2, он связывает HIFα, что приводит опять же к убиквитинированию и протеасомной деградации этого белка. К тому же белок p53 конкурирует c HIF за связывание коактиваторных белков CBP/p300.

Гипоксия, HIF и медицинская практика

Все многоклеточные организмы, а животные в особенности, чрезвычайно зависимы от кислорода. Этот элемент совершенно необходим нам для дыхания — процесса, который обеспечивает производство в митохондриях молекул АТФ, используемых практически во всех процессах жизнедеятельности клеток. Неудивительно, что целый ряд медицинских проблем связан именно с нарушениями снабжения тканей кислородом и ответом на это состояние. Это определяет тесную связь фундаментальной составляющей сделанных открытий с медицинской практикой.

Во-первых, потенциальное практическое применение связано с проблемой адаптации организма к каким-то специфическим условиям, где по той или иной причине возникает более или менее длительная кислородная недостаточность — подъем на высоту, подводные погружения и т. д. Во-вторых, — с лечением нарушений в тканях, обусловленных ишемическими состояниями, к примеру, из-за атеросклеротических изменений сосудов, гипертонии, заболеваний дыхательных путей или анемии. В-третьих, — с воспалительными процессами, включая, в частности, заживление ран и отторжение трансплантатов. В-четвертых, оно связано с проблемой возрастных изменений, которые могут выражаться в неспособности организма в полной мере реализовать необходимый адаптивный ответ на гипоксию тканей.

Все вышеупомянутые проблемы могут иметь решение в виде дополнительной активации ответа организма на гипоксию. Для этого разрабатываются препараты, ингибирующие белки гидроксилазы и VHL. В частности, в настоящее время для лечения анемии испытывается препарат Роксадустат (Roxadustat), который ингибирует ферменты PHD (пролилгидроксилазы).

С другой стороны, HIF очень часто бывает гиперактивирован в опухолевой ткани. Эта повышенная активность бывает обусловлена как фактическим недостатком доступа кислорода к клеткам опухоли вследствие очень быстрого ее роста, так и мутациями в гене белка HIFα или его регуляторов. В этом случае потенциально возможным решением является, напротив, применение подавителей ответа на гипоксию, которые препятствуют интенсивному ангиогенезу в опухолевой ткани и тем самым замедляют рост и понижают агрессивность раковой опухоли. Некоторые синтетические препараты, прямо или косвенно подавляющие HIF (например, сердечный гликозид дигоксин), в настоящее время проходят клинические испытания для лечении нескольких форм рака.

О проонкогенном влиянии избыточной активации HIF, конечно, следует помнить, разрабатывая стратегии решения проблем гипоксии, упомянутые чуть выше. Гиперактивация ответа на гипоксию может иметь и другие негативные последствия.

Наконец, нельзя не сказать о том, что система ответа на концентрацию кислорода оказывается критически важной не только в каких-то специфических условиях среды или при патологии тканей, но и в ходе нормального эмбрионального развития. HIF участвует в росте, дифференцировке, контроле апоптоза клеток многих тканей, включая сердечно-сосудистую, скелетогенную и иммунную системы. Эксперименты на животных показали, что эмбрион, лишенный функционального фактора HIF, очень рано погибает вследствие нарушения процессов формирования кровеносной системы по мере роста зародыша и невозможности нормального развития организма.

В последние годы становится ясно, что реакции клеток на изменения доступности кислорода достаточно многокомпонентны и что есть и другие сигнальные пути, не включающие HIF. И трое ученых, удостоенных Нобелевской премии, как и сотни других исследователей по всему миру, продолжают активно развивать данную область. С этими новыми подробностями можно познакомиться в совсем недавних публикациях, напримеру: M. Ivan, W. G. Kaelin, 2017. The EGLN-HIF O2-Sensing System: Multiple Inputs and Feedbacks, A. A. Chakraborty et al., 2019. Histone demethylase KDM6A directly senses oxygen to control chromatin and cell fate и C. W. Pugh, P. J. Ratcliffe, 2017. New horizons in hypoxia signaling pathways. И есть все основания ожидать, что эти исследования сыграют важную роль в решении практических задач здравоохранения.

Татьяна Романовская  (https://elementy.ru/)

Купить расходные материалы для КИСЛОРОДНОЙ ТЕРАПИИ вы можете на сайте ARTMED.STORE

 2 декабря 2019 

29-30 ноября 2019 г. в Москве прошла Научно-Практическая Конференция «Респираторная Интенсивная ТерАпия» («РИТА»). Организаторами и идеологами ее проведения выступили представители Федерации анестезиологов и реаниматологов совместно с сотрудниками Научного клинического центра ОАО «РЖД».

Научно-Практическая Конференция «Респираторная Интенсивная ТерАпия» («РИТА»), 29-30 ноября 2019 г., Москва
Научно-Практическая Конференция «Респираторная Интенсивная ТерАпия» («РИТА»).

 Мероприятие собрало более 150 врачей-анестезиологов-реаниматологов и специалистов смежных направлений со всей России. С докладами, посвященными актуальным вопросам клинической физиологии, диагностике и лечению острого респираторного дистресс-синдрома выступили Э.М. Николаенко (Москва, НКЦ ОАО «РЖД», руководитель центра интенсивной терапии и анестезиологии, главный специалист по анестезиологии-реаниматологии Центральной дирекции здравоохранения ОАО «РЖД», д.м.н., профессор) и А.И. Ярошецкий (Москва, РНИМУ им. Н.И. Пирогова, Заведующий отделом анестезиологии и реаниматологии НИИ Клинической хирургии, к.м.н., доцент).

Участие компании.

Компания участвовала стендом в выставочной программе конференции.


Так же в научной программе с докладом выступила Специалист по изделиям для ухода за полостью рта Екатерина Богачева. 

Выступление сотрудника компании Екатерины Богачевой на Конференции


Особый интерес участников конференции врачей-анастезиологов вызвали товары разделов Кислородная терапия, Аэрозольная Терапия, раздела Магистрали и Проводники.